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Abstract
Background  Sarcopenia is a progressive loss of muscle mass and function. Since skeletal muscle plays a critical role 
in metabolic homeostasis, identifying the relationship of blood metabolites with sarcopenia components would help 
understand the etiology of sarcopenia.

Methods  A two-sample Mendelian randomization study was conducted to examine the causal relationship of blood 
metabolites with the components of sarcopenia. Summary genetic association data for 309 known metabolites were 
obtained from the Twins UK cohort and KORA F4 study (7824 participants). The summary statistics for sarcopenia 
components [hand grip strength (HGS), walking pace (WP), and appendicular lean mass (ALM)] were obtained 
from the IEU Open GWAS project (461,089 participants). The inverse variance weighted method was used, and the 
MR-Egger, weighted median, and MR-PRESSO were used for the sensitivity analyses. Metabolic pathways analysis was 
further performed.

Results  Fifty-four metabolites associated with sarcopenia components were selected from 275 known metabolites 
pool. Metabolites that are causally linked to the sarcopenia components were mainly enriched in amino sugar 
and nucleotide sugar metabolism, galactose metabolism, fructose and mannose metabolism, carnitine synthesis, 
and biotin metabolism. The associations of pentadecanoate (15:0) with ALM, and 3-dehydrocarnitine and 
isovalerylcarnitine with HGS were significant after Bonferroni correction with a threshold of P < 1.82 × 10− 4 (0.05/275). 
Meanwhile, the association of hyodeoxycholate and glycine with the right HGS, and androsterone sulfate with ALM 
were significant in the sensitivity analyses.

Conclusion  Blood metabolites from different metabolism pathways were causally related to the components of 
sarcopenia. These findings might benefit the understanding of the biological mechanisms of sarcopenia and targeted 
drugs development for muscle health.
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Introduction
Sarcopenia, an accelerated loss of muscle mass and func-
tion, is a progressive and complex disease associated with 
a higher risk of falls, frailty, morbidity, and mortality [1], 
which leads to decreased quality of life and a higher bur-
den of healthcare [2]. Although sarcopenia has been rec-
ognized as a disease by the International Classification of 
Diseases (ICD) since 2016 [3], its biological mechanisms 
have not been fully understood.

Metabolites are intermediates or end products of 
metabolism that play essential roles in human health. 
Modern omics techniques, including metabolomics, have 
made positive contributions to exploring disease mecha-
nisms, specifically providing novel insights into the bio-
logical mechanisms of diseases by revealing intermediate 
metabolites and altered metabolic pathways [4]. Recently, 
metabolomics has helped characterize specific metabolic 
phenotypes related to muscle health and explore the 
relationships between specific metabolites and muscle 
health. Metabolites biomarkers of L-alanine, gluconic 
acid, proline, and tryptophan were identified for severe 
sarcopenia in the community-dwelling older men [5], 
and pentadecanoic acid, 5’-Methylthioadenosine, asym-
metric dimethylarginine, and glutamine were identified 
in diabetic patients with sarcopenia [6]. However, blood 
metabolites are probably susceptible to the confounding 
factors of diet, exercise and other lifestyle habits, which 
could not be clarified in traditional observational studies 
[7–9]. The causality of blood metabolites in sarcopenia 
needs valid confirmation.

Mendelian randomization (MR) analysis, using genetic 
variation as a natural experiment, is a useful strategy to 
investigate the causal relations between potentially modi-
fiable exposures and health outcomes in observational 
studies [7]. Furthermore, two-sample MR could help 
estimate a causal effect of the risk factor on the outcome 
by incorporating different studies from multiple sources 
[8]. Then, based on the generated genetic and metabolic 
profiles, the causal associations of genetically deter-
mined metabolomics effects on muscle health could be 
explored.

Thus, this study aimed to investigate the potential 
causal relationships between the blood metabolites and 
the components of sarcopenia [hand grip strength (HGS), 
walking pace (WP), and appendicular lean mass (ALM)] 
using a two-sample MR approach. We further identified 
the potential metabolic pathways based on the metabo-
lites with causal effects on sarcopenia components. Our 
study may help to understand the biological mechanisms 
of sarcopenia development.

Materials and methods
Study design
A two-sample MR design was applied, and the study 
methods complied with the STROBE-MR checklist [9]. 
Three assumptions that a Mendelian randomization 
study should satisfy: assumption 1, the genotype was 
related to the exposure (relevance assumption); assump-
tion 2, the association of the genotype with the outcome 
was independent of the other confounding factors (inde-
pendence assumption); assumption 3, the genotype was 
associated with the outcome only by the exposure stud-
ied (exclusivity assumption). An overview of the study 
design was shown in the Fig. 1.

Data sources of exposure
Genome-wide association study (GWAS) data for blood 
metabolites were obtained from two European popula-
tion cohorts [10], which included 1768 participants from 
the KORA F4 study in Germany and 6056 from the UK 
Twin Study. Table S1 in the Supplementary file 1 sum-
marized the GWAS data used in this study. The database 
included a total of 529 metabolites profiled using liquid-
phase chromatography and gas chromatography separa-
tion coupled with tandem mass spectrometry in either 
plasma or serum [10], which were chemically identified 
and could be assigned to eight broad metabolic groups 
(amino acids, carbohydrates, cofactors and vitamins, 
energy, lipid, nucleotides, peptides, and xenobiotics) [11]. 
After stringent quality controls, a subset of 452 metabo-
lites were available for genetic analysis, including 275 
known metabolites.

Selection of instrumental variables (IVs) for blood 
metabolites
The IVs for each of the 275 known metabolites were con-
structed separately. Several procedures were performed 
to ensure the assumption that the genotype was related 
to the exposure: (a) the genetic variants were identified 
with the association at a threshold of P < 1 × 10 − 5 in the 
MR Analysis. (b) independent variants were identified 
using a clumping procedure implemented in R soft-
ware, in which a linkage-disequilibrium (LD) thresh-
old of r2 < 0.1 within a 500  kb window in the European 
1000 Genomes Project Phase 3 reference panel was set. 
Single nucleotide polymorphisms (SNPs) absent from 
the LD reference panel were also removed. Instrument 
SNPs were selected by removing SNPs with minor allele 
frequency (MAF) less than 0.01. Ambiguous SNPs (e.g., 
A/G vs. A/C) and palindromic SNPs (i.e., A/T or G/C) 
were directly excluded during the harmonizing process 
to ensure that the effect of each SNP on the exposure and 
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its effect on the outcome corresponds to the same allele. 
Next, for the association of each SNP with each metabo-
lite, the F statistic and R square were calculated, respec-
tively. The amount of variance explained by the IVs was 
calculated for each exposure using the TwoSampleMR 
package (get_r_from_bsen function). The potential weak 
instrumental variable bias was tested by calculating the 
F statistic using the formula F = beta2 / se2, where beta is 
the estimated genetic effect on human blood metabolites, 
and se is the standard error of the genetic effect [12]. The 
possibility of weak IV bias was slight when the F statistic 
was much greater than 10 [13]. (c) Lastly, potential pleio-
tropic effects of the SNPs used as IVs were tested using 
the online tools LDtrait [14] and PhenoScanner [15]. The 
SNPs that were significantly associated with the con-
founders or risk factor traits of sarcopenia, such as BMI, 
obesity, diabetes, chronic inflammatory disease, older 
age, low socioeconomic status, poor diet, low physical 
activity, and lack of physical activity, were removed. The 
stringently selected SNPs above were used as the IVs in 
the two-sample MR analysis subsequently.

Data sources of outcome
The data of sarcopenia components were obtained from 
published studies from the UK Biobank [16]. The GWAS-
associated data for HGS included 461,089 individuals for 
the right HGS and 461,026 individuals for the left HGS 
[17]. Genetic predictors of WP were assessed using the 
summary statistics from the UK Biobank, which includes 

459,915 individuals of European ancestry [17]. The cat-
egorical variable was further defined according to WP 
(slow pace: WP < 3 mph, moderate pace: 3 ≤ WP ≤ 4 mph, 
and fast pace: WP>4 mph). The GWAS-associated data 
for ALM included 450,243 individuals from the European 
Bioinformatics Institute (EBI) database [18].

Statistical analysis
MR analysis
The causal associations between the 275 known human 
blood metabolites and the components of sarcopenia 
were systematically assessed by a two-sample MR analy-
sis. The inverse variance weighting (IVW) method was 
used to evaluate the causal effects in the two-sample 
MR analysis. A fixed effect model was used if there was 
no heterogeneity and no pleiotropy, and a random effect 
model was used if there was a heterogeneity but no plei-
otropy. The Cochran Q test was carried out to detect the 
existence of heterogeneity, with the Cochran-Q derived 
P < 0.05 and I2 > 25% recognized as a heterogeneity [19]. 
The estimates of IVW were obtained by calculating the 
slope of the weighted linear regression [20]. A multiple-
testing-adjusted threshold using the Bonferroni cor-
rection was adopted to declare a statistically significant 
causal relationship. The associated metabolites identi-
fied at a threshold of P < 0.05 but did not reach the Bon-
ferroni-corrected significance, were also suggested as 
potential risk factors for the components of sarcopenia.

Fig. 1  Overview of the current Mendelian randomization (MR) study. Notes: SNP, Single nucleotide polymorphism; LD, Linkage disequilibrium; IVW, 
Inverse-variance weighted; WM, Weighted median; LOO analysis, Leave-one-out sensitivity analysis; MR-PRESSO, Mendelian Randomization Pleiotropy 
RESidual Sum and Outlier. *Three assumptions that a Mendelian randomization study should satisfy: assumption 1, the genotype was related to the 
exposure(relevance assumption); assumption 2, the association of the genotype with the outcome was independent of the other confounding factors 
(independence assumption); assumption 3, the genotype was associated with the outcome only by the exposure studied (exclusivity assumption)
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Sensitivity analyses
Sensitivity analyses were performed to assess any bias in 
the MR assumptions. The MR-Egger method was used 
to test the directional horizontal pleiotropy and to esti-
mate the causal effects if there were pleiotropies or any 
violations of the IVs assumptions [21]. Weighted median 
estimates remain valid even when up to 50% of the infor-
mation was derived from the valid SNPs [22]. A leave-
one-out sensitivity analysis was further performed to 
determine whether the estimates were influenced by a 
single SNP [21]. MR-PRESSO was used to examine the 
horizontal pleiotropy outliers and to provide corrected 
estimates [23]. Additionally, the MR Steiger directionality 
test was performed to see whether the results supported 
the proposed hypothesis. P < 0.05 was considered statisti-
cally significant. All MR analyses were conducted using 
R software (R Core Team 2022, version 4.2.1) with the R 
package “TwoSample MR package” (version 0.5.6) and 
“MR-PRESSO” (version 1.0).

Metabolic pathway analysis
A metabolic pathway analysis for the identified metabo-
lites was performed using the web-based MetaboAna-
lyst 5.0 software [24]. https://www.metaboanalyst.ca/
docs/Publications.xhtml. The functional enrichment 
analysis module and pathway analysis module were used 
to perform metabolic pathway analysis for the blood 
metabolites that were identified by the IVW method, as 
mentioned above. The metabolic pathway analysis tested 
183 human metabolic pathways from two metabolite set 
libraries, including 99 metabolite sets from the Small 
Molecule Pathway Database (SMPDB) and 84 metabolite 
sets from the Kyoto encyclopedia of genes and genomes 
(KEGG) [4].

Results
This study screened 5891 SNPs linked to 275 metabolites 
which were included in the MR analysis. There were 17 
SNPs that were significantly associated with the afore-
mentioned confounders or risk factors, including BMI, 
obesity, diabetes, chronic inflammatory disease, were 
removed (Supplementary file 1: Table S2 and Table S3). 
Then, 1015 IVs having a potential causal relationship with 
the components of sarcopenia were selected from the 
GWAS datasets of 275 metabolites, and then available for 
further MR analysis (Supplementary file 1: Table S2 and 
S4). These IVs could explain 0.25–10.02% of the variance 
of their corresponding metabolites. These IVs had a mini-
mum F-statistic of 18.63, indicating that all the IVs were 
valid in the MR Analysis (F statistics > 10).

Fifty-four genetically predicted known metabolites 
associated with the components of sarcopenia were 
observed at the significance of P < 0.05 in the IVW 
analysis (Supplementary file 2: Figure S1). As indicated 

by the results from the MR Steiger directionality test, 
the current estimates of causal direction were accurate 
(P < 0.001), and no SNP had shown pleiotropy (Supple-
mentary file 1: Table S5). Among these, 19 known metab-
olites were associated with two or more components of 
sarcopenia simultaneously when P < 0.05 was used as the 
threshold (Supplementary file 1: Table S6).

After the multiple-testing-adjusted Bonferroni correc-
tion with a threshold of 1.82 × 10− 4 (0.05/275), 5 causal 
associations between 3 metabolites and sarcopenia com-
ponents were observed. The increased Pentadecanoate 
(15:0) [β(95%) = -0.250 (-0.361, -0.140), P = 8.90 × 10− 6] 
was associated with a decrease in ALM. 3-dehydrocar-
nitine [β(95%) = -0.151(-0.213, -0.089), P = 2.08 × 10− 6] 
and isovalerylcarnitine [β(95%) = -0.120(-0.176, -0.064), 
P = 2.96 × 10− 5] were negatively associated with right 
HGS, while 3-dehydrocarnitine [β(95%) =-0.166(-0.228, 
-0.104), P = 1.59 × 10− 7] and isovalerylcarnitine [β(95%) 
= -0.122(-0.182, -0.061), P = 7.99 × 10− 5] were negatively 
associated with left HGS (Fig. 2 and Supplementary file 
1: Table S7).

Sensitivity analyses
Sensitivity analyses were conducted for the identi-
fied metabolites to evaluate the robustness of the esti-
mates. The causal relationships of androsterone sulfate 
and glycine with ALM, hyodeoxycholate, glycine and 
4-androsten-3beta, 17beta-diol disulfate 1 with the right 
HGS, and androsterone sulfate with WP were reliable 
and similar effect estimates were found for the weighted 
median, MR-Egger and MR-PRESSO method (Fig. 3 and 
Supplementary file 1: Table S8). According to the results 
of the leave-one-out sensitivity analysis, hyodeoxycholate 
[β(95%) = 0.027(0.010, 0.044), P = 1.88 × 10− 3] and glycine 
[β(95%) = 0.057 (0.020,0.093), P = 2.19 × 10− 3] increased 
was associated with an increase estimate of right HGS, 
and androsterone sulfate showed a significant negative 
associated with ALM[β(95%) = -0.039(-0.060, -0.018), 
P = 2.35 × 10− 4]. Therefore, the MR analysis was reliable, 
and no single SNPs changed the results substantially 
(Supplementary file 2: Figure S2-S5).

Metabolic pathway analysis
Thirteen metabolic pathways associated with sarco-
penia components were identified by the metabolic 
pathway analysis (Table 1). Pathways enriched for metab-
olites associated were amino sugar and nucleotide sugar 
metabolism, galactose metabolism, fructose and man-
nose metabolism, carnitine synthesis, biotin metabolism. 
The pathways identified in the functional enrichment 
analysis module are shown in Supplementary file 1: Table 
S9.

https://www.metaboanalyst.ca/docs/Publications.xhtml
https://www.metaboanalyst.ca/docs/Publications.xhtml
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Discussion
This study assessed the causal relationships between 
the blood metabolites and the sarcopenia-related traits 
through a MR study combining genomics and metabo-
lomics. After the multiple-testing-adjusted Bonferroni 
correction, 3 known metabolites, which were pentadec-
anoate (15:0) on ALM, 3-dehydrocarnitine and iso-
valerylcarnitine on HGS were identified. Meanwhile, 
hyodeoxycholate and glycine were reliably positively 
associated with the right HGS, and androsterone sul-
fate showed a reliable negative association with ALM 
in the sensitivity analysis. 13 metabolic pathways were 

identified to be causally associated with the components 
of sarcopenia.

Pentadecanoate (15:0) was a dietary biomarkers for 
dairy-fat consumption [25], which also played a vital 
role in muscle metabolism and function [26]. This is 
consistent to the findings in the current study. Isobu-
tyrylcarnitine is a metabolic product that occurs during 
the transfer of acyl residues from isobutyryl coenzyme 
A to carnitine [27]. Previous studies have shown that 
higher levels of hydroxylated acylcarnitine was negatively 
correlated with the decline in grip strength in a short 
term [34], while medium and long-chain acylcarnitines 
were correlated with a poorer physical function [28]. 

Fig. 3  The known metabolites validated in the sensitivity analyses

 

Fig. 2  The significant Mendelian randomization (MR) association (P < 1.82 × 10− 4) between known metabolites and components of sarcopenia
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Acylcarnitine, disrupting peroxisomal or mitochondrial 
oxidation processes [29], also plays a part in mitochon-
drial function, whose dysregulation is highly involved in 
the pathological loss of skeletal muscle mass and function 
in the elderly [30]. 3-dehydrocarnitine is an intermediate 
in carnitine degradation, and carnitine has been linked to 
muscle mass or physical weakness [31, 32], which plays 
a crucial role in energy metabolism and mediates the 
pathway of fatty acid oxidation in the mitochondria [33]. 
However, these observational results are limited in deter-
mining causal relationships. Therefore, further investiga-
tions are warranted to confirm the biological functions of 
the above metabolites in relation to the muscle health.

Hyodeoxycholate, androsterone sulfate and glycine 
have also been identified as certain specific metabo-
lites in relation to muscle health in the current study. 
Hyodeoxycholate is a bile acid derivative, and a nega-
tive correlation between blood hyodeoxycholic acid and 
muscle uncoupling protein 3 gene was found, suggesting 
a potential impact on muscle function [34]. Androste-
rone sulfate is one metabolite of androgens, which may 
also be associated with the change of lean body mass and 
muscle mass [35]. This study found a negative association 
between androsterone sulfate and ALM, which further 
supports the potential link between androsterone sulfate 
and muscle function. Glycine is involved in anti-inflam-
matory, immune function, and antioxidant responses. 
Although glycine was found to be negatively associated 
with HGS in older men in a cross-sectional study [28], 
the nutritional supplement of glycine reversed multiple 
age-related abnormalities. It promoted the health of 
older participants in a clinical trial [36]. In the current 
study, glycine was also found to be causally and positively 
related to the HGS, which could help understand the 
positive effect of glycine.

Metabolic pathway analysis revealed that amino sugar 
and nucleotide sugar metabolism, galactose metabolism, 
fructose and mannose metabolism, carnitine synthe-
sis, biotin metabolism were critical pathways in relation 
to muscle health. Amino sugar and nucleotide sugar 
metabolism is involved in oxidative induction and inhib-
its muscle glucose uptake, which may have a potential 
regulatory effect on blood glucose levels [37]. A genetic 
study identified the critical genes involved in muscle 
growth modification development by bioinformat-
ics analysis, and the differentially expressed genes were 
mainly involved in skeletal muscle contraction, fatty acid 
metabolism, and galactose metabolism [38]. Additionally, 
the effect of fructose and mannose metabolism pathway 
was identified in the current study, which may be related 
to its effect on the metabolome of myopathies. And fruc-
tose and mannose metabolism were found to be closely 
related to glycolysis and may provide substrates for sugar 

nucleotide synthesis in the previous studies [39], which 
may interact with the energy metabolism in muscle.

This study has several advantages. At first, a wide 
range of blood metabolites have been explored to inves-
tigate the potential metabolic profile causally correlated 
with the value of muscle health. Secondly, a two-sample 
MR Design was applied to exclude reverse causality and 
residual confounding, and the consistent results from 
various MR Models helped verify the MR assumptions 
and support the robustness of the MR estimates. Thirdly, 
the SNPs associated with potential confounders were 
evaluated and excluded. Finally, the potential metabolite 
groups or pathways were explored additionally to help 
understand the biological processes of muscle health. 
This study has several limitations. Firstly, due to limited 
resources, no causal relationship has been identified 
between blood metabolites and sarcopenia diagnosed 
based on the cut-off values [40, 41]. Because more phe-
notypic information cannot be used to study individuals, 
the results lacked the influence on body size and com-
position. Secondly, more IVs identified in GWAS might 
be needed to help accurately assess the genetic influ-
ence on metabolites. The third approximation of muscle 
mass in the UK Biobank used in the present study was 
measured using bio-impedance analysis (BIA), which 
may be less accurate than the values measured by other 
imaging detections, such as dual-energy x-ray absorpti-
ometry (DXA), magnetic resonance imaging (MRI) and 
computed tomography (CT). In addition, demographic 
characteristics had not been considered in the present 
analyses, and the study was primarily limited to individu-
als of European ancestry, which limits the generalization 
of the findings.

Conclusion
In conclusion, generally, the metabolites causally linked 
to the sarcopenia components were mainly enriched in 
the pathway of amino sugar and nucleotide sugar metab-
olism, galactose metabolism, fructose and mannose 
metabolism, carnitine synthesis, and biotin metabolism. 
Several metabolites were further identified by Bonferroni 
correction. Pentadecanoate (15:0) was negatively associ-
ated with the estimate of ALM. 3-dehydrocarnitine and 
isovalerylcarnitine were negatively associated with HGS. 
Meanwhile, the association of hyodeoxycholate and gly-
cine with the right HGS, and androsterone sulfate with 
ALM were significant in the sensitivity analyses. These 
findings might have implications for the biological mech-
anisms of sarcopenia and targeted drug development for 
muscle health.
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