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Predicting outcomes in older ED patients
with influenza in real time using a big data-
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the hospital information system
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Abstract

Background: Predicting outcomes in older patients with influenza in the emergency department (ED) by machine
learning (ML) has never been implemented. Therefore, we conducted this study to clarify the clinical utility of
implementing ML.

Methods: We recruited 5508 older ED patients (≥65 years old) in three hospitals between 2009 and 2018. Patients
were randomized into a 70%/30% split for model training and testing. Using 10 clinical variables from their
electronic health records, a prediction model using the synthetic minority oversampling technique preprocessing
algorithm was constructed to predict five outcomes.

Results: The best areas under the curves of predicting outcomes were: random forest model for hospitalization
(0.840), pneumonia (0.765), and sepsis or septic shock (0.857), XGBoost for intensive care unit admission (0.902), and
logistic regression for in-hospital mortality (0.889) in the testing data. The predictive model was further applied in
the hospital information system to assist physicians’ decisions in real time.

Conclusions: ML is a promising way to assist physicians in predicting outcomes in older ED patients with influenza
in real time. Evaluations of the effectiveness and impact are needed in the future.

Keywords: Emergency department, Influenza, Hospital information system, Machine learning, Mortality, Older,
Prediction, Random forest

Background
The rapidly aging population is one of the most import-
ant issues worldwide. In the United States, older adults
(≥65 years old) were 15.2% of the total population in
2016, are projected to be 20% in 2030, and 23.5% in

2060 [1]. Taiwan is one of the rapidly aging countries in
the world. In 2018, the number of deaths was nearly
equal to that of births [2]. Older adults represented 14%
of the total population in 2018, and are projected to be
20% in 2025 [2].
Influenza is a life-threatening disease for the older

population. An Asian study revealed that older adults
contributed to 70–90% of total deaths [3]. The mortality
rate of influenza in older adults was nearly 39-fold that
of the population aged 40–64 years old [3]. Influenza-
related complications, including cardiorespiratory
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diseases, pneumonia, chronic obstructive pulmonary dis-
ease (COPD), and ischemic heart diseases, are the com-
mon causes of death [3].
Because of limited medical resources during the influ-

enza season, predicting outcomes in older adults with
influenza and their subsequent disposition becomes a
critical issue. In our previous study, we recruited 409
older patients with influenza for developing a Geriatric
Influenza Death Score (GID score) [4]. This study identi-
fied five independent mortality predictors: severe coma
(Glasgow Coma Scale [GCS] ≤8), past histories of malig-
nancy and coronary artery disease (CAD), elevated C-
reactive protein (CRP) levels (> 10mg/dl), and bandemia
(> 10% band cells) [4]. Three mortality risk and dispos-
ition groups were formed according to five predictors: (1)
low risk (1.1%; 95% confidence interval [CI], 0.5–3.0%); (2)
moderate risk (16.7, 95% CI, 9.3–28.0%); and (3) high risk
(40, 95% CI, 19.8–64.2%). The GID score has an area
under the receiver operating characteristic curve of 0.86,
and Hosmer-Lemeshow goodness of fit of 0.578 [4].
Although the GID score is a potentially good clinical

decision rule (CDR) in older adults with influenza, it has
the limitations of the small size of derivation sample and
lacks both automation and feedback in real time to clini-
cians [5]. Artificial intelligence (AI) is defined as that
uses computer techniques, including machine learning
(ML) and deep learning (DL) to represent intelligent be-
havior [6]. In recent years, a great deal of evidence
showed that AI could handle more variables that are
already available through electronic health records
(EMRs) and may better predict patient outcomes [5].
We performed searches on Google Scholar and PubMed
using the keywords “AI,” “death,” “influenza,” “machine
learning,” “mortality,” “older adult,” and “outcome,” but
we did not find any AI application in this field. There-
fore, we conducted the present study for clarifying the
issue and applying it in the hospital information system
(HIS) to assist decision making in real time.

Methods
Study design, setting, and participants
We included emergency physicians, information engi-
neers, data scientists, quality managers, and nurse practi-
tioners to establish a multi-disciplinary team for this
project (Fig. 1). After our literature review, we decided
to use the previous study about predicting mortality in
older ED patients with influenza as the main reference
[4]. We identified all older patients (≥65 years old) with
influenza who visited the ED between January 1, 2009,
and December 31, 2018, from the EMRs of three hospi-
tals: Chi Mei Medical Center, Chi Mei Hospital, Liouy-
ing, and Chi Mei Hospital, Chiali. The present study
hospitals are not the hospitals for developing the GID
score. The criteria of influenza are defined as the

diagnosis of International Classification of Diseases,
Ninth Revision, Clinical Modification (ICD-9-CM) of
487 or 488 or a prescription of Oseltamivir, Peramivir,
or Relenza in the index ED visit.

Definitions of feature variables
We adopted 10 potential risk factors proposed in the pre-
vious study for predicting mortality in the older patients
with influenza as the feature variables for the ML or DL in
this study [4]: (1) tachypnea (respiratory rate > 20/min);
(2) severe coma (GCS ≤8, 3) history of hypertension; (4)
history of CAD; (5) history of malignancy; (6) bedridden;
(7) leukocytosis (WBC > 12,000 cells/mm); (8) bandemia
(> 10% band cells); (9) anemia (hemoglobin < 12mg/dL);
and (10) elevated CRP (> 10mg/dL).
In addition, we also recruited age, sex, vital signs, and

past histories of hypertension (ICD-9: 401–405), diabetes
(ICD-9-CM: 250), COPD (ICD-9-CM: 496), CAD (ICD-9-
CM: 410–414), stroke (ICD-9: 436–438), malignancy
(ICD-9: 140–208), congestive heart failure (CHF, ICD-9-
CM: 428), dementia (ICD-9: 290), bedridden, feeding with
a nasogastric tube, and nursing home resident, laboratory
data including white blood cell count (WBC), bandemia,
hemoglobin, platelet, serum creatinine, CRP, procalcito-
nin, glucose, Na, K, GOT, and GPT for this study. The pa-
tients who did not have a record of subsequent follow-up
were excluded. Missing laboratory data were treated as
the normal values (i.e., respiratory rate: 12/min, GCS: 15,
WBC: 7000 cells/mm, band form: 0%, hemoglobin: 12mg/
dL, and CRP: 2.5 mg/dL).

Outcome measurements
The outcome measurements were binary coded as the
follows: (1) hospitalization; (2) complications with pneu-
monia (ICD-9-CM: 480–486): (3) complications with
sepsis or septic shock (ICD-9-CM: 038, 790.7, 995.91,
995.91, 785.52); (4) admitted to intensive care unit
(ICU); and (5) in-hospital mortality.

Ethical statement
The present study was approved and granted permission to
access the raw data by the institutional review board in the
Chi Mei Medical Center. Because this study is retrospective
and it contains de-identified information, informed consent
from the participants was waived. The waiver does not
affect the rights and welfare of the participants.

Data processing, model comparison, and application in
the HIS
First, we extracted, transformed, and validated the data
from the HIS into a data mart. Missing and ambiguous data
were carefully processed at this step. Second, we randomly
split the data to two dataset (70%/30%) and used the syn-
thetic minority oversampling technique (SMOTE) to

Tan et al. BMC Geriatrics          (2021) 21:280 Page 2 of 8



enlarge the first dataset (70%) as training dataset because of
imbalanced outcome samples. The second dataset (30%) is
used as testing dataset without any resampling. Third, ac-
cording the optimal modeling result with testing dataset,
we compared accuracy, sensitivity, specificity, positive pre-
dictive value, negative predictive value, and the area under
the curve (AUC) among the analyses of the random forest,
logistic regression, K-nearest neighbors (KNN), support
vector machine (SVM), light gradient boosting machine
(LightGBM), multilayer perceptron (MLP, a kind of DL),
and Extreme Gradient Boosting (XGBoost). In this step, we
conducted grid search with hyper-parameters for each algo-
rithm to obtain the optimal models (hyper-parameter

ranges for each algorithm were summarized in Supplemen-
tary Table 1). Then, we selected the best algorithm to
develop the prediction model for each outcome.
Fourth, we deployed the model in the AI web service
and integrated it with the HIS in the ED. After two-
months of pilot testing and validating, we launched
the prediction application in the HIS to assist physi-
cians for decision making in real time.

Patient and public involvement
Patients and the public were not be involved in this
study.

Fig. 1 Flowchart of the application of ML for predicting outcomes in older ED patients with influenza. ED, emergency department; KNN, K-
nearest neighbors; SVM, support vector machine; LightGBM, light gradient boosting machine; MLP, multilayer perceptron; XGBoost, Extreme
Gradient Boosting; AI, artificial intelligence
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Results
In total, we recruited 5508 older ED patients into the
present study. The mean ± standard deviation (SD) of
age was 76.61 ± 7.44 years old, and the female proportion
was 50.67% (Table 1). The proportion of the three age
subgroups were young elderly (43.06%), moderately eld-
erly (40.56%), and old elderly (16.38%). The mean ± SD
of respiratory rate and GCS were 19.16 ± 3.94 breaths/
min and 14.41 ± 1.84, respectively. The histories of ED
patients were hypertension (56.05%), CAD (19.64%),
malignancy (14.32%), and bedridden (31.94%). The
mean ± SD of WBC, hemoglobin, and CRP were
8670.00 ± 4220.00 cells/mm3, 12.42 ± 1.95 mg/dL, and
42.06 ± 50.98 mg/dL, respectively. The proportions of pa-
tient outcomes were hospitalization (47.33%), complica-
tions with pneumonia (37.71%), complications with
sepsis or septic shock (5.57%), admitted to ICU (1.07%),
and in-hospital mortality (2.20%).
Comparisons of predictive accuracies among the ran-

dom forest, logistic regression, KNN, SVM, LightGBM,
MLP, and XGBoost revealed that the random forest
model had the best AUC for hospitalization, pneumonia,
and sepsis or septic shock than did other models in the
testing dataset (Table 2 and Supplementary Fig. 1). The
XGBoost had the best AUC for ICU admission (0.902)
and logistic regression had the best AUC for in-hospital
mortality (0.889). Table 3 summarized the best AUC for
each outcome in the testing dataset, which was adopted
for building the prediction model in further. Feature im-
portance according to a random forest, logistic regres-
sion, LightGBM, and XGBoost for predicting the five
outcomes was also reported (Supplementary Fig. 2).
We applied the best algorithm for predicting outcomes

in older ED patients in the HIS to assist decision making
in real time. An AI button was set up in the HIS of the
ED (Supplementary Fig. 3). When the clinician presses
the AI button, the AI application automatically catch the
feature variables from the HIS and pops up a screen of
the prediction result within 1 sec (Supplementary Fig. 4).
The prediction result shows a personalized prediction
for hospitalization, complications with pneumonia, com-
plications with sepsis or septic shock, admitted to ICU,
and in-hospital mortality. Using five-level Likert, a mean
of 4.6 was responded by 101 times of use, which indi-
cates that the AI prediction is useful for the clinicians.

Discussion
The present study revealed that the random forest had
the best AUC for predicting hospitalization, pneumonia,
and sepsis or septic shock, XGBoost had the best AUC
for predicting ICU admission, and logistic regression
had the best AUC for predicting in-hospital mortality in
older ED patients with influenza. The predictions are
very fast, in real time, and actionable, which provide

Table 1 Characteristics of older ED patients with influenza in
this study
Variable Total patients (n = 5508)

Age (years) 76.61 ± 7.44

Age subgroup (%)

Young elderly (65–74) 43.06

Moderately elderly (75–84) 40.56

Old elderly (≥85) 16.38

Sex, %

Female 50.67

Male 49.33

Triage vital signs

GCS 14.41 ± 1.84

SBP (mm Hg) 142.88 ± 32.77

Heart rate (beats/min) 93.38 ± 24.24

Respiratory rate (breaths/min) 19.16 ± 3.94

Body temperature (°C) 37.53 ± 6.64

Past histories (%)

Hypertension 56.05

Diabetes 32.37

COPD 12.87

CAD 19.64

CVA 18.77

Malignancy 14.32

CHF 11.27

Dementia 10.62

Bedridden 31.94

Laboratory data

WBC (cells/mm3) 8670.00 ± 4220.00

Bandemia (%) 4.10 ± 5.24

Hemoglobin (mg/dL) 12.42 ± 1.95

Platelet (103/mm3) 187.36 ± 72.39

Creatinine (mg/dL) 1.29 ± 1.52

hs-CRP (mg/dL) 42.06 ± 50.98

Sodium (mEq/L) 134.68 ± 4.86

Potassium (mmol/L) 3.76 ± 0.52

GOT (U/L) 51.55 ± 172.64

GPT (U/L) 31.79 ± 64.43

Outcomes (%)

Hospitalization 47.33

Pneumonia 37.71

Sepsis or septic shock 5.57

ICU admission 1.07

In-hospital mortality 2.20

Data are presented as mean ± SD or percent. ED Emergency department; GCS
Glasgow coma scale; SBP Systolic blood pressure; COPD Chronic obstructive
pulmonary disease; CAD Coronary artery disease; CVA Cerebrovascular
accident; CHF Congestive heart failure; WBC White blood cell count; hs-CRP
High sensitivity C-reactive protein; GOT Glutamic oxaloacetic transaminase;
GPT Glutamate pyruvate transaminase; ICU Intensive care unit; SD
Standard deviation
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Table 2 Comparisons of predictive accuracies among random forest, logistic regression, KNN, SVM, LightGBM, MLP, and XGBoost in
the outcomes of testing dataset of older ED patients with influenza

Outcomes and predictive models Accuracy Sensitivity Specificity PPV NPV AUC

Hospitalization

Random forest 0.769 0.744 0.791 0.762 0.775 0.840

Logistic regression 0.737 0.751 0.726 0.711 0.764 0.799

KNN 0.736 0.737 0.736 0.715 0.757 0.790

SVM 0.750 0.751 0.749 0.728 0.770 0.840

LightGBM 0.748 0.714 0.780 0.744 0.752 0.823

MLP 0.733 0.702 0.760 0.724 0.740 0.806

XGBoost 0.721 0.705 0.736 0.706 0.735 0.800

Pneumonia

Random forest 0.679 0.681 0.679 0.562 0.778 0.765

Logistic regression 0.662 0.661 0.662 0.542 0.764 0.709

KNN 0.645 0.700 0.613 0.522 0.771 0.683

SVM 0.657 0.700 0.631 0.534 0.777 0.733

LightGBM 0.653 0.700 0.625 0.530 0.775 0.724

MLP 0.660 0.660 0.660 0.540 0.762 0.688

XGBoost 0.674 0.700 0.658 0.553 0.784 0.744

Sepsis or septic shock

Random forest 0.795 0.750 0.798 0.179 0.982 0.857

Logistic regression 0.799 0.750 0.801 0.182 0.982 0.832

KNN 0.714 0.750 0.712 0.133 0.980 0.785

SVM 0.707 0.750 0.705 0.130 0.980 0.806

LightGBM 0.739 0.739 0.739 0.143 0.980 0.822

MLP 0.730 0.728 0.730 0.137 0.979 0.761

XGBoost 0.744 0.739 0.744 0.146 0.980 0.811

ICU admission

Random forest 0.860 0.722 0.862 0.054 0.996 0.885

Logistic regression 0.720 0.778 0.719 0.030 0.997 0.867

KNN 0.607 0.611 0.607 0.017 0.993 0.622

SVM 0.768 0.778 0.768 0.036 0.997 0.778

LightGBM 0.809 0.722 0.810 0.040 0.996 0.874

MLP 0.629 0.611 0.629 0.018 0.993 0.649

XGBoost 0.912 0.722 0.914 0.085 0.997 0.902

In-hospital mortality

Random forest 0.792 0.806 0.792 0.079 0.995 0.875

Logistic regression 0.816 0.806 0.816 0.089 0.995 0.889

KNN 0.652 0.639 0.652 0.039 0.988 0.663

SVM 0.789 0.722 0.791 0.071 0.992 0.762

LightGBM 0.769 0.722 0.770 0.065 0.992 0.844

MLP 0.675 0.667 0.675 0.044 0.989 0.728

XGBoost 0.751 0.806 0.750 0.067 0.994 0.858

KNN K-nearest neighbors; SVM Support vector machine; LightGBM Light gradient boosting machine; MLP Multilayer perceptron, XGBoost Extreme Gradient
Boosting; ED Emergency department; PPV Positive predictive value; NPV Negative predictive value; AUC Area under the curve
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prognostic information to assist in decision making, in-
cluding disposition and outcome explanation.
Using AI prediction for assisting decision-making is an

appealing idea [7]. Because of the increased availability
of EMRs and advancement of computer performance
and algorithm, AI prediction based on the medical big
data becomes a promising way for healthcare [8]. In re-
cent years, the rapid progression of cloud and IoT (inter-
net of things) by healthcare monitor and wearable
sensor networks also greatly support the development of
real-time AI prediction [8]. Therefore, the AI-based
tools, which are designed to improve diagnosis, care
planning, and outcome will be incorporated into health-
care services in the near future [9]. Many regulations
about AI use in healthcare need to be developed, includ-
ing establishment of normative standard, evaluation
guidelines, and monitoring and reporting systems [9].
The adopted feature variables in this study, including

comorbidities and abnormal vital signs and laboratory
data, are the risk factors for poor outcomes. The more
feature variables, the poorer outcome in the result of AI
prediction.
The random forest is superior to the traditional model

(i.e., logistic regression) for developing CDR in predict-
ing hospitalization, pneumonia, sepsis or septic shock,
and ICU admission. One possible reason for the lower
predictive accuracies of logistic regression is that it lacks
external validation [5]. Traditional CDRs, including the
GID score, are typically developed by gathering data at
one or more hospitals, and then using both to derive
and validate a model from a chosen set of predictors.
The developed CDRs are then used in other hospitals,
different from the original study hospital [10]. A recent
study reviewed 127 new prediction models and showed
that external independent validation was uncommon in
predictive models [11]. Predictive performance in exter-
nal validation tends to be worse than the original study
[11]. In contrast to the GID score derived from other
hospitals, we used local real-world big data in multi-
centers to make predictions about the local population,
which improves accuracy over the traditionally derived
model. The variables used in the present study are

structured data from the local EMR without being sub-
jected to ambiguous clinical definitions or biases of data
collection.
The random forest model is an ensemble learning

method for classification and regression [12, 13]. It com-
bines many binary decision trees, which are built by sev-
eral bootstrapped learning samples, and chooses a subset
of variables randomly at each node [12, 13]. Each tree in
the random forest will vote for some input x, then the
voting majority of trees will determine the output of the
classifier [14]. The random forest can use a large num-
ber of trees in the ensemble to handle high dimensional
data [14]. The random forest is a common method
adopted for predicting outcomes and selecting predictors
in the ED. A study about predicting in-hospital mortality
in ED patients with sepsis revealed that the AUC of the
random forest was 0.86, superior to the CART
(classification and regression tree) model (0.69); logistic
regression model (0.76); CURB-65 (Confusion, Urea,
Respiratory rate, Blood pressure plus age ≥ 65 years old)
(0.73); MEDS (mortality in emergency department sep-
sis) (0.71); and mREMS (modified rapid emergency
medicine score) (0.72) [5]. A study used the random for-
est to select the most relevant variables for major ad-
verse cardiac events in ED patients with chest pain [12].
They found that the selection predictor by the random
forest is promising in discovering a few relevant and sig-
nificant predictors [12].
The SMOTE adopted in the present study is the most

common and effective method of oversampling for adjust-
ing imbalanced data [15]. SMOTE solves the problems of
both high-class skew and high sparsity and works in the
“feature space” rather than “data space” [16]. By taking
each minority class sample and the K-nearest neighbors,
SMOTE creates synthetic samples for effectively forcing
the decision region of the minority class to become more
general [16]. Without duplicating the data, SMOTE in-
creases the data space and amplifies the features of the mi-
nority class [16]. Studies with SMOTE preprocessing in
health care are also acceptable [17, 18].
According to our literature review, the present study

has the strength of being the first real-time prediction

Table 3 Evaluation report using the best model with the SMOTE preprocessing algorithm on the outcomes of testing dataset of
older ED patients with influenza

Outcome Number Negative
outcome

Positive
outcome

Accuracy Sensitivity Specificity PPV NPV AUC

Hospitalization (random forest) 5508 2901 2607 0.769 0.744 0.791 0.762 0.775 0.840

Pneumonia (random forest) 5508 3431 2077 0.679 0.681 0.679 0.562 0.778 0.765

Sepsis or septic shock (random forest) 5508 5201 307 0.795 0.750 0.798 0.179 0.982 0.857

ICU admission (XGBoost) 5508 5449 59 0.912 0.722 0.914 0.085 0.997 0.902

In-hospital mortality (logistic regression) 5508 5387 121 0.816 0.806 0.816 0.089 0.995 0.889

SMOTE Synthetic minority oversampling technique; ED Emergency department; PPV Positive predictive value; NPV Negative predictive value; AUC Area under the
curve; ICU Intensive care unit; XGBoost Extreme Gradient Boosting
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application in the HIS using ML for older ED patients
with influenza. The limitations are as follows. First, in-
terpretability and inferences about variables are the
problems of ML. Second, we did not compare the pre-
dictive accuracy between this model and the physician’s
judgment. Further studies about this issue, as well as the
impact of this model, are warranted. Third, variable se-
lection was not conducted in this study. We decided to
adopt 10 potential risk factors proposed in the previous
study for increasing the explainability for AI models. In
the future, including as many variables as possible and
reducing the number by running proper variable selec-
tion algorithms are needed. Fourth, the application may
not be generalized to other hospitals because it needs
building an infrastructure to make real-time predictive
analytics a reality.

Conclusions
We developed the first real-time prediction application
in the HIS for predicting outcomes in older ED patients
with influenza using a big data-driven and machine
learning approach. This real-time prediction is a promis-
ing way to assist the physician’s decision making and ex-
planations to patients and their families. Further studies
about the predictive accuracy between this model and
both the physician’s judgment, impact of the application,
and including as many variables as possible and reducing
the number by running proper variable selection algo-
rithms are needed.
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