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Abstract

Background: Frailty is a highly recognized geriatric syndrome resulting in decline in reserve across multiple
physiological systems. Impaired physical function is one of the major indicators of frailty. The goal of this study was
to evaluate an algorithm that discriminates between frailty groups (non-frail and pre-frail/frail) based on gait performance
parameters derived from unsupervised daily physical activity (DPA).

Methods: DPA was acquired for 48 h from older adults (265 years) using a tri-axial accelerometer motion-sensor.
Continuous bouts of walking for 20s, 30s, 40s, 50s and 60s without pauses were identified from acceleration data. These
were then used to extract qualitative measures (gait variability, gait asymmetry, and gait irregularity) and quantitative
measures (total continuous walking duration and maximum number of continuous steps) to characterize gait
performance. Association between frailty and gait performance parameters was assessed using multinomial logistic
models with frailty as the dependent variable, and gait performance parameters along with demographic parameters as
independent variables.

Results: One hundred twenty-six older adults (44 non-frail, 60 pre-frail, and 22 frail, based on the Fried index) were
recruited. Step- and stride-times, frequency domain gait variability, and continuous walking quantitative measures were
significantly different between non-frail and pre-frail/frail groups (p < 0.05). Among the five different durations (20s, 30s,
40s, 50s and 60s), gait performance parameters extracted from 60s continuous walks provided the best frailty assessment
results. Using the 60s gait performance parameters in the logistic model, pre-frail/frail group (vs. non-frail) was identified
with 76.8% sensitivity and 80% specificity.

Discussion: Everyday walking characteristics were found to be associated with frailty. Along with quantitative measures
of physical activity, qualitative measures are critical elements representing the early stages of frailty. In-home gait
assessment offers an opportunity to screen for and monitor frailty.

Trial registration: The clinical trial was retrospectively registered on June 18th, 2013 with ClinicalTrials.gov, identifier
NCT01880229.
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Background

Among the population who are 60 years or older, frailty
is a highly recognized syndrome that is associated with
decline in function and reserve across multiple physio-
logic systems [1-5]. Frailty is characterized by a high
vulnerability to adverse health outcomes such as disabil-
ity, falls, hospitalization, institutionalization, and mortal-
ity [1]. Reduction or impairment of physical function is a
prime indicator of frailty [2], and frailty is one of the
major reasons for falls in old age [6—12]. Many defini-
tions of frailty have been proposed: Fried et al. used five
criteria (slowness, exhaustion, weakness, low-activity and
weight-loss) to identify frailty [2]; Rockwood et al. devel-
oped a frailty index based on impairments in cognitive
status, mood, motivation, communication, mobility, bal-
ance, bowel and bladder function, activities of daily liv-
ing, nutrition, social resources and number of
comorbidities [13]; Mitnitski et al. constructed a frailty
index based on 20 deficits as observed in a structural
clinical examination based on the comprehensive geriat-
ric assessment (CGA) [14]; Jones et al. also based their
frailty index based on CGA which included 10 standard
domains to construct a three level frailty index permit-
ting risk stratification of future adverse outcomes [15];
and Chin et al. compared three different working defini-
tions of frailty — inactivity plus low energy intake, in-
activity plus weight-loss and inactivity plus low body
mass index [16]. Although many definitions of frailty
have been proposed, we use Fried’s frailty criteria as the
most commonly implemented frailty assessment tool in
our study. However, there is currently no objective
method for assessing frailty that incorporates assessment
of daily physical activity (DPA).

DPA data has been recently used to assess physical
function, especially with the help of wearable sensor
technology. Using wearable devices, it is possible to con-
tinuously measure DPA in the least intrusive manner
and for longer durations of time in the participants’ nat-
ural environment. Among several DPA, motion analysis
of the trunk during walking is known to provide insights
regarding neuromuscular deficits associated with frailty
and aging [12]. In our previous studies, among DPA
measures (walking, standing, sitting, and lying), quantita-
tive parameters related to walking, such as total walking
duration and maximum number of steps, best discrimi-
nated between non-frail and pre-frail groups, with high-
est effect sizes for the number of steps and the
percentage of walking duration within a 24-h time
period [17]. While promising, we found that none of
these outcomes (or their combination in a multinomial
logistic analysis) could significantly discriminate between
frailty groups when adjusted for age [17].

In this study, we aimed to improve detection of frailty-
related neuromuscular deficits based on gait performance
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parameters derived from unsupervised DPA. Previous
studies have used trunk motion data from supervised in-
lab gait tests to characterize sensorimotor gait perform-
ance among frail elders including gait variability, asym-
metry, initiation, and irregularity [11, 12, 18-22]. We
hypothesized that using more robust measures of un-
supervised DPA gait performance such as gait variability,
asymmetry and irregularity (instead of number of steps) it
would be possible to distinguish between non-frail and
pre-frail/frail older adults.

Methods

This observational cross-sectional study was performed
at Arizona Center on Aging, Tucson, AZ. Participants in
this study were from primary, secondary, and tertiary
health-care settings within our academic network and
also from community providers and aging service orga-
nizations. DPA was recorded from eligible volunteers for
48 h and the walking data from the DPA was processed
to study the gait performance parameters and associate
these characteristics with frailty.

Participants

Older adults (65 years or older), without severe mobility
disorder and the ability to walk at least 10 m with or
without an assistive device, were considered eligible for
the study. Participants with cognitive-impairment
(screened by a Mini-Mental State Examination (MMSE)
[23] score of <23) or terminal illness were excluded. All
the eligible participants signed a written consent form
according to the principles expressed in the Declaration
of Helsinki [24], approved by the Institutional Review
Board of the University of Arizona.

Demographic and clinical measures

The recorded clinical measures included self-reported
history of falls, use of assistive device and the number of
prescriptions. Interviewer-administered questionnaires
included the MMSE, Mobility-Tiredness Scale [25], Cen-
ter for Epidemiologic Studies Depression Scale (CES-D)
[26], Falls Efficacy Scale-International (FES-I) [27], and
Barthel Activity of Daily Living (ADL) Scale [28].

Frailty assessment

Frailty was assessed using the five criteria proposed by
Fried et al. [2], including: self-reported weight loss,
weakness measure by the grip strength, self-reported ex-
haustion, slowness measure by the walking test, and self-
reported low energy expenditure. A score of one point
was given for each criterion recorded, totaling a score in
the range of 0-5. Frailty was categorized as follows: non-
frail (score 0), pre-frail (score 1-2), and frail (score 3-5).
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Sensor-based daily physical activity assessment

DPA was quantified for two consecutive days (48 h) using a
tri-axial accelerometer sensor (PAMSys, BioSensics Cam-
bridge, MA, USA) fixed in a tee-shirt, with a device pocket
located at the sternum. PAMSys is a small (5.1 x3x 1.6
cm), light (24 g) recording system containing inertial sen-
sors. PAMSys is an ambulatory system designed and devel-
oped for human motion analysis using a kinematic sensor.
It uses one kinematic sensor placed on the chest and is cap-
able of accurately identifying and recording postural transi-
tions (sit-to-stand and stand-to-sit), laying, walking, and
standing [29-31]. PAMSys uses discrete wavelet transform-
ation techniques based on a previously validated algorithm
(PAMWare, BioSensics Cambridge, MA, USA) to identify
walking bouts [32-34]. Using this method, walking bouts
were defined by a minimum of three successive steps [29],
where steps were estimated by the detection of an acceler-
ation peak beyond a predefined threshold after filtering the
signal [31]. Using this software several gait parameters were
derived including: the duration of walking, walking bout
times (duration of each walking episode), number of steps
per walking bout, and walking cadence per bout. PAM-
Ware is 87% sensitive and 87% specific for gait detection
[29, 30]. In the current study, we used raw vertical acceler-
ation data recorded by the PAMSys tri-axial accelerometer
sensor, as well as the timing of walking bouts from the
PAMWare software to extract gait performance parameters
within continuous walking bouts.

Continuous walking bouts
Previous studies that explored the gait characteristics of
non-disabled adults for 2 weeks to define walking dur-
ation, found that 81% of all walking bouts lasted about
60s [35, 36]. Further, previous studies suggested that a
duration of 60-s continuous data would provide a reli-
able sample for nonlinear dynamic analysis [37]. Accord-
ingly, in our study, we used continuous walking bouts of
60 s or longer for the extraction of gait performance pa-
rameters. In addition to the 60s analysis, all the gait per-
formance parameters were extracted for 20s, 30s, 40s
and 50s lengths of continuous walking bouts to investi-
gate the effect of continuous walk length on data ana-
lysis and results. Gait performance parameters including
time- and frequency-domain gait variability, gait asym-
metry, and gait irregularity were extracted from these
continuous walking bouts of all the durations, with no
pauses longer than 1.7 s between gait cycles [17]. Allow-
able 1.7 s pause between gait cycles was conservatively
selected based on the average plus standard deviation
stride time duration observed in frail participants [17].
All the sensor-based gait performance outcome mea-
sures are shown in Table 1.

For each continuous walking bout, the raw vertical ac-
celeration signal extracted from the PAMSys sensor was

Page 3 of 11

filtered using a second order Butterworth filter (cut-off
frequency of 2.5 Hz [44]), and the peaks of the filtered
acceleration signal were detected using a peak-detection
algorithm. The time-interval between two consecutive
peaks was defined as the step-time, and the time-interval
between alternate peaks was defined as the stride-time.

Gait variability

We defined gait variability as the stride-to-stride fluctu-
ation in gait cycles, which has been associated with high
risk of fall and cognitive impairments in elders [6, 45—47].
Gait variability reflects inconsistency in physiological sys-
tems that regulate walking, including neuromuscular, re-
flexive postural control, and cardiovascular systems [48].
We used two methods to assess gait variability: 1) step-
and stride-time variability using time-domain; and 2)
power spectral density (PSD) using frequency-domain
analysis [49, 50]. Step- or stride-time variability was calcu-
lated as the coefficient of variation of the series of step- or
stride-times for each continuous walking bout. For PSD
analysis, the power spectrum of the acceleration data was
calculated using Welch’s averaged modified periodogram
method [38], to represent the frequency components of
the acceleration signal [51]. We used a window size of 512
samples and an FFT length of 2-times the next higher
power of the window size [38]. An overlap of 50% was
considered between the windows. The locomotion band
between 0.5-3.0 Hz was analyzed [38]. PSD components
were extracted from the raw acceleration signal, including
maximum PSD peak, PSD width (full width at half max-
imum height), PSD slope (PSD width to the peak) and
dominant walking frequency. A higher variability in walk-
ing was identified by a shorter and wider PSD peak.

Gait Asymmetry

When gait becomes less automatic due to sarcopenia and
cognitive aging, left-right step coordination may require
more effort, especially among frail individuals [17, 37, 52].
Further, studies showed that no strong association be-
tween gait variability and asymmetry exists, suggesting
that asymmetry reflects an independent measure of gait
impairments due to distinct pathological causes [17, 52].
Here, step asymmetry was obtained from the autocorrel-
ation function of the vertical acceleration signal [17, 52],
represented by a sequence of autocorrelation coefficients
over increasing time lags.

| Ady-Ad, |
maX(Ad1,Ad2)

(1)
where Ad; and Ad, are the prominence of the first and

the second peaks respectively after the central (zero lag)
peak [53].

Asymmetry, = Asymmetry, =

Ady
Ady’
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Table 1 Sensor-based outcome measures
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Parameter Description Reference
Step/stride time Time-interval between two consecutive/alternate acceleration peaks
Gait Variability
Step/stride time variability Coefficient of variation (%), standard deviation of step/stride time over mean step/stride [17]
time
PSD max Maximum height of the PSD distribution curve representing the amount of walking that [38, 39]
occurs at the dominant frequency
PSD width The width of the PSD curve at half of the maximum height representing the range of [38, 39]
walking frequencies
PSD slope The slope of the PSD curve from the peak to the width representing the variability of [38, 39]
walking.
Dominant frequency The frequency at which the PSD curve attains its peak, representing the frequency at which [38, 39]
most of the walking cycles occur
Gait Asymmetry
Unbiased auto-correlation coefficients of gait signal, representing left-right step [11,40]
coordination
Gait Irregularity
Sample entropy, representing the predictability of walking cycles [41-43]

Continuous Walking Quantitative Measures
No. of continuous walks
Total continuous walking duration
Max walking bout

Max no. of continuous steps

Walking bout variability

Total number of continuous walks in the 48 h duration
Total duration of continuous walks in the 48 h duration
Maximum duration of continuous walking in 48 h

Maximum number of continuous steps in the longest duration continuous walking bout
in 48h

Coefficient of variation (%), standard deviation of walking bouts over mean walking bout

Duration of non-continuous walks (%
of total walking duration)

Duration of walks which were not continuous for 60s or longer (total duration of 60s
walking minus continuous walking with no pause)

PSD Power Spectral Density

Gait irregularity

Results from supervised gait studies showed that irregu-
larity measures can describe predictability of walking cy-
cles, which can be influenced by both neurological and
neuromuscular diseases [18, 54—56]. Further, within in-
lab settings, it has been demonstrated that gait irregular-
ity can differ between non-frail and pre-frail older adults
[21]. We used Sample Entropy (SampEn) assessment de-
fined as Eq. (2), where A was defined as the number of
matches in the filtered acceleration signal length m + 1
(distance function smaller than tolerance : d[X,, . 1(i),
X +1()] <r) and B as the number of matches of length
m: (d[X,,(0), X,u(f)] < 7) [41, 57-60].

(Za)
(ZiﬁmBi)

The time-delay of the signal was calculated using mu-
tual information method for all the continuous walks
[61], and the average time-delay of all the continuous
walks was used to calculate the SamplEn for each volun-
teer. We used embedding dimension m=3, and

SampEn = - log = -logA/B (2)

tolerance r=0.2 times the standard deviation of the sig-
nal, which are commonly used to compute sample en-
tropy of gait signal [41, 57-60].

Continuous walking quantitative measures

In addition to the above-mentioned features, we ex-
tracted the following parameters in each continuous
walking event: maximum walking bout, maximum num-
ber of continuous steps, walking-bout variability (coeffi-
cient of variation in walking bouts duration within 48 h),
and total duration of continuous walks. Of note, the pa-
rameters extracted here were only obtained for continu-
ous walking events with no pause of 1.7 s or longer, as
described above. Duration of non-continuous walk (total
duration of 60s walking minus 60s continuous walking
with no pause) was obtained as a percentage of total
duration of walking from the PAMsys sensor.

Statistical analysis

Separate analysis of variance (ANOVA) models were
performed to compare sociodemographic parameters be-
tween the three Fried frailty groups. To explore differ-
ences in gait performance parameters among frailty
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categories, univariate ANOVA models were used with
each gait performance parameter as the dependent vari-
able, and the Fried frailty categories (non-frail and pre-
frail/ frail) as the independent variable. Subsequently,
gait performance parameters were used in a single multi-
variable nominal logistic model to assess the association
between frailty categories and DPA gait performance pa-
rameters. In this model we combined pre-frail and frail
groups, due to the limited number of frail participants.
The model was developed following these steps: 1) uni-
variate nominal logistic model analysis of the gait per-
formance parameters as independent variables was
performed. Gait performance parameters with significant
association with frailty were considered for subsequent
steps; 2) collinearity between the various gait perform-
ance parameters was tested using the variance inflation
factor (VIF) index. VIF value greater than 10 represented
the presence of collinearity [62]; and 3) gait performance
and demographic parameters were selected based on
Akaike information criterion (AIC) values. Participants
who exhibited no 20/30/40/50/60s continuous walks
were automatically categorized as frail in the respective
model. All analyses were done using JMP (Version 11;
SAS Institute Inc., Cary, NC, USA), and statistical sig-
nificance was concluded when p < 0.05.

Results

Demographic and clinical measures

The study involved a total of 126 participants, among
whom 44 were non-frail, 60 were pre-frail and 22 were frail
according to the Fried frailty criteria [2]. Table 2 shows
demographic and clinical characteristics. Pre-frail/frail

Table 2 Demographic and clinical characteristics
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participants were significantly older than non-frail partici-
pants, used assistive devices more frequently, had higher
BMI, perceived tiredness, and fear of falling score (p < 0.05)
and lower performance scores in ADL (p < 0.05).

Sensor-based daily physical activity assessment

Table 3 shows the sensor-based DPA parameters for 60s
continuous walking with resulting p-values of one-way
ANOVA test (Fig. 1, Table 3) and Cohen’s d effect sizes.
Supplementary Table 1 (a-d) shows the sensor-based
DPA parameters for 20s, 30s, 40s, and 50s continuous
walks with resulting p-values of one-way ANOVA tests
respectively.

Of note, among the total 126 participants, 4 non-frail
(9.09%), 17 pre-frail (28.33%), and 11 frail (50%) had no
walking bout equal or longer than 60s. These partici-
pants who did not have any 60s continuous walking bout
(age: 81.59 +8.34) were significantly (p =0.035) older
than the participants who had continuous walks (age:
77.94 + 8.43). Frailty status was also significantly (p =
0.001) different between the participants who did not
have any continuous walking bouts (87.5% pre-frail/frail)
compared to those who had continuous walks (57.45%
pre-frail/frail). However, the BMI and gender were not
significantly different between these groups (p > 0.079).

Among the 60s continuous gait parameters, frequency
domain gait variability parameters and quantitative mea-
sures including maximum number of continuous steps,
maximum walking bout and total continuous walking
duration best discriminated non-frail and pre-frail/frail
individuals. Step- and stride-time were significantly dif-
ferent between non-frail vs pre-frail/frail (p <0.001).

Characteristics Non-frail Pre-frail/Frail (P/F) p-value
(n (=NZ;4) (n=82) N vs P/F
Age (years) 74.6 + 6.5 81.2 + 86 <0.001
Height (cm) 161.7 + 6.9 161.3 + 9.5 0.797
Weight (kg) 67.2 + 128 76.0 + 18.1 0.005
Body mass index 257 + 4.5 292 + 6.5 0.002
Gender 0.190
Male 6 (13.6) 19 (23.2)
Female 38 (86.4) 63 (76.8)
History of falls 13 (29.5) 37 (45.1) 0.085
Falls Efficacy Scale - International 20.8 + 4.2 313 + 116 <0.001
Use of assistive devices 4 9.1) 41 (50.0) <0.001
Mobility-tiredness scale 56 + 08 4.1 + 18 <0.001
MMSE 29.2 + 1.1 286 + 1.6 0.060
CES-D 6.6 + 5.7 89 + 7.5 0.079
Barthel ADL Scale 97.6 + 46 93.8 + 79 0.004

Results presented as mean + SD or number (%). Bold-faced values show statistical significance (p < 0.05)
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Table 3 Gait performance parameters for 60s continuous walks, one-way ANOVA results, and Cohen’s d effect sizes between non-

frail(N) and pre-frail(P)/frail(F) groups

Parameter Non-frail Pre-frail/Frail p-value (Eff. size)
" ~ 0 (n(P=/F5)4) N vs. P/F

Temporal Gait Parameters

Step-time (s) 0.56 + 0.05 061 + 0.06 <0.001 (0.91)

Stride-time (s) 113 + 0.09 1.23 + 0.12 <0.001 (0.92)
Time Domain Gait Variability

Step variability (%) 10.79 + 2.80 10.95 + 3.36 0.812 (0.05)

Stride variability (%) 9.16 + 294 874 + 3.04 0509 (0.13)
Frequency-domain Gait Variability

PSD max (W/Hz) 0.17 + 0.16 0.07 + 0.07 <0.001 (0.90)

PSD width (Hz) 022 + 0.10 021 + 0.03 0.446 (0.17)

PSD slope (W) 1.24 + 1.21 048 + 049 <0.001 (0.90)

Dominant frequency (Hz) 1.90 + 0.16 1.73 + 0.18 <0.001 (0.97)
Gait Asymmetry

Asymmetry 1 1.10 + 0.14 1.05 + 0.21 0.229 (0.26)

Asymmetry 2 0.09 + 0.07 0.08 + 0.06 0.625 (0.10)
Gait Irregularity

Time delay (ms) 145.39 + 14.90 156.25 + 23.86 0.124 (0.33)

Sample entropy (bits) 093 + 0.28 1.00 + 0.29 0.225 (0.25)
Continuous Walk Quantitative Measures

Number of continuous walks 13.25 + 11.22 1063 + 1043 0.112 (0.33)

Total continuous walking duration (s) 404233 + 3012.86 2436.79 + 1988.46 0.001 (0.70)

Max walking bout (s) 47562 + 51227 216.98 + 228.95 0.001 (0.77)

Max number of continuous steps 1867.58 + 1735.98 896.63 + 1055.53 0.001 (0.78)

Walking bout variability (%) 25274 + 110.51 195.88 + 73.98 0.002 (0.69)

Duration of non-continuous walks (% total of walking duration) 41.82 + 27.85 47.25 + 4239 0482 (0.15)

PSD Power Spectral Density

Further, among the frequency domain gait variability pa-
rameters, PSD amplitude, PSD slope, and the dominant
frequency were significantly different between non-frail
and pre-frail/frail groups (p < 0.05). However, step- and
stride-time  variabilities did not show statistical

significance between the two groups (p > 0.1). Gait asym-
metry, representing left and right step coordination, was
not statistically significant between the two frailty groups
(p>0.1). Similarly, gait irregularity, measuring predict-
ability of walking cycles, displayed an increasing trend
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towards pre-frailty/frailty; but the observed between-
group differences were not significant (p >0.1). All the
continuous walk quantitative measures showed differ-
ences between the two groups, and most of these differ-
ences were statistically significant between the two
groups (p < 0.05).

Frailty prediction using gait performance parameters

A multinomial logistic regression model was developed
using gait performance parameters extracted from DPA
along with age and BMI to predict frailty. A step-wise
logistic model was developed with frailty groups as the
dependent variable (non-frail vs. pre-frail/frail), for
which, age (years), BMI (kg/m?), stride-time variability
(%), dominant frequency (Hz), and maximum number of
continuous steps were selected as independent variables
(Table 4). The logistic regression model developed with
these features was able to predict pre-frail/frail category
with an improved receiver operating characteristics
(ROC) area under curve (AUC) of 0.84 compared to age
(ROC AUC: 0.71) and total number of steps for 48 h
(ROC AUC: 0.77, Table 5). The ROC curves are shown
in Fig. 2.

Results of logistic regression models developed with gait
performance parameters extracted from 20s, 30s, 40s and
50s continuous walks, age, and BMI to predict pre-frail/
frail category for the different continuous walking lengths
are shown in supplementary Table 2. The corresponding
ROC curves in comparison with the 60s ROC curve are
presented in supplementary Figure 1. Of note, we ob-
served that among the five different durations (20s, 30s,
40s, 50s and 60s), gait performance parameters extracted
from 60s continuous walks provided the best frailty assess-
ment results (supplementary Table 2 and supplementary
Figure 1).

Discussion

As hypothesized, several sensor-based gait performance
parameters significantly discriminated between non-frail
and pre-frail/frail groups, even when adjusted with age.
In our previous studies the total number of steps and
walking duration could not significantly discriminate
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pre-frail participants from non-frail when adjusted with
age [17]. This improvement in frailty assessment oc-
curred due to utilization of the novel concept of con-
tinuous walking for obtaining both qualitative and
quantitative gait performance parameters.

Continuous walks

The ability to walk longer distances is instrumental for
humans to perform various activities of daily living and
lead an independent life. Walking requires complex
mechanisms within the human sensory motor system to
provide the necessary timing, coordination, and balance
such that the interplay between the center of mass and
the base of support are regulated in a repetitive manner
[57, 63]. Previous studies that explored the gait charac-
teristics of non-disabled adults for 2 weeks to define
walking duration, found that 81% of all walking bouts
lasted about 60s [35, 36]. Also to assess the effect of
continuous walk duration in pre-frailty/frailty assess-
ment, we analyzed gait performance parameters ex-
tracted from 20s, 30s, 40s, 50s, and 60s continuous
walking bouts and observed that 60s continuous walks
provided the best pre-frailty/frailty assessment results
compared to other continuous walk durations. Previous
studies also showed that accelerometer-derived gait per-
formance measures based on daily activities could im-
prove fall risk evaluation in older adults, when 60-s
continuous walking periods were implemented com-
pared to overall number of steps [36]. Similarly, in the
current study, 60s continuous walking with no pauses
resulted in better discrimination between the frailty
groups (p < 0.05), when compared with continuous walks
with shorter duration and walks that included pauses.

Advantages of qualitative gait parameters

In addition to previously reported quantitative gait param-
eters (number of steps, mean walking bout duration, and
longest walking bout duration) [17], here we extracted
qualitative gait performance parameters (gait variability,
asymmetry, and irregularity). Specifically, gait variability
represented a promising measure for differentiating gait
deficits among the three frailty categories. Gait variability,

Table 4 Parameter estimates for logistic regression models developed with different parameters

Model Features Parameter Parameter Estimate Std. Error X2 p-value
MODEL 1: Age Age —0.0885 0.03 9.75 0.002
MODEL 2: Total number of steps Total number of steps 0.0001 0.00 12.54 0.001
MODEL 3: Gait performance parameters Age (years) -0.1191 0.04 827 0.004
BMI (kg/mz) -0.1772 0.06 849 0.004
Stride variability (%) -0.2507 0.11 539 0.020
Dominant frequency (Hz) 6.6265 2.14 9.62 0.002
Max no. of continuous steps 0.0001 0.00 033 0.565
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Table 5 Logistic model performance comparison of different
parameters for 80% specificity

Model Features Accuracy Sensitivity  Specificity AUC

Age 65.1% 58.1% 80% 0.71
Total number of steps  74.6% 46.5% 80% 0.77
Gait performance 77.7% 76.8% 80% 084

parameters

defined as the stride-to-stride fluctuation in walking cy-
cles, has been previously associated with high risk of fall
and cognitive impairments in elders [6, 45—47, 64]. Gait
variability reflects inconsistency in physiological systems
that regulate walking, including neuromuscular, reflexive
postural control, and cardiovascular systems. We used
two methods to assess gait variability: step/stride time
variability using time-domain and power spectral density
(PSD) using frequency-domain analyses. We observed that
the frequency-domain parameters were significantly dif-
ferent between frailty groups, while time-domain parame-
ters were not. Owing to the low sampling frequency in
this study, some of the information content may be lost
due to filtering for peak detection [65]. Hence, the PSD
analysis performed on the entire raw acceleration signal
may provide a more efficient tool for assessing gait vari-
ability for low sampling frequency motion sensor data.
Additionally, gait asymmetry and irregularity were also
investigated here, as parameters that represent gait defi-
cits independent of gait variability. Gait asymmetry,
representing left-right step coordination, has been used
as a metric to observe walking patterns in older individ-
uals. Cognitive aging and sarcopenia render gait to be
less automatic and left-right symmetry co-ordination is
expected to require additional effort, especially in frail

1
0.8
B 0.6
Z
0.4
0.2 7 Gait performance parameters, AUC: 0.84
7
o w Age, AUC: 071
e - - - - Total number of steps, AUC: 0.77
0
0 0.2 0.4 0.6 0.8 1
1 - Specificity
Fig. 2 Logistic regression model ROC curves for age, total number
of steps, and gait performance parameters
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individuals [37]. Although gait asymmetry showed a de-
creasing trend from non-frail to pre-frail and frail sam-
ples, differences were not significant (Table 3). Since
loss in step-coordination may also happen due to hip,
knee, or ankle impairments [66], these confounding vari-
ables can mask the effect of frailty. Further, gait irregu-
larity, representing the predictability of walking cycles,
can be influenced by both neurological and neuromus-
cular diseases [18, 54—56]. Previous studies have used
sample entropy to obtain gait predictability or repeat-
ability to investigate differences in the relationship be-
tween executive function, and gait variability and
stability during single and dual-task walking in persons
with and without dementia [55]. We computed gait ir-
regularity using the sample entropy method and ob-
served an increase in irregularity in pre-frail/frail
population but there was no statistical significance seen
between the groups (Table 3).

Limitations

There are limitations to consider in the interpretation of
these findings. The first limitation is the lack of longitu-
dinal validation of the DPA index for direct prediction
of frailty-related health complications. Accordingly, due
to a cross-sectional design of the current study, no con-
clusion can be made regarding the accuracy of the pro-
posed index compared to the Fried test, or other types
of frailty measures. Second limitation is adherence to the
wearable sensor equipment. Though the participants did
not express any obvious discomfort while wearing the
sensors, it is possible that a few of the participants forgot
to wear them immediately after a shower. Third, our
sample was predominantly women. Although we did not
observe a gender specific difference in gait performance,
the model developed here may have limited
generalizability to a population with a more balanced
gender composition. Fourth, we consider a continuous
walk as one with 20/30/40/50/60s or longer duration
with no pauses. However, it is possible that this walk
was purposeful with the individual walking to a certain
destination or that this walk was a random stroll with no
specific purpose. These possibilities could potentially
bias the quality of walking, but in our data we did not
have the required information to categorize continuous
walks as purposeful or random. Finally, not all partici-
pants, especially pre-frail and frail ones, had continuous
walks during the 48h of data collection, causing a re-
duced sample size for the pre-frail/frail group. To over-
come this limitation, we combined pre-frail and frail
participants and all the participants who did not exhibit
continuous walking were automatically categorized as
pre-frail/frail while developing the logistic model. Since
detecting the onset of frailty at the pre-frail stage is most
crucial in recovering health status [67], our findings
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suggested a promising method for pre-frailty identifica-
tion using DPA data.

Summary and conclusion
Using gait performance parameters extracted from 60s
continuous walks within 48 h of daily monitoring, pre-
frailty/frailty was identified with a sensitivity of 76.8% and
specificity of 80% among elders. Findings suggest that
these DPA-based 60s continuous walking parameters, in-
cluding gait variability and the amount of continuous
walking, may noticeably improve gait deficit assessment
compared to previous in-clinic gait assessment methods.
The proposed gait performance characterization based on
sensor-based daily physical activity provides potential for
being integrated into clinical care for in-home screening
of frailty (much as a holter monitor is used) to provide in-
formation pertaining to an individual’s condition before
hospital admission, or when frailty is suspected. This
method is advantageous over its in-clinic counterpart as it
is objective rather than subjective self-reported measures
of physical activity, and is measured in real-world walking
activities rather than an artificial clinical setting. Although
Fried’s frailty criteria [2] provides an accurate frailty meas-
ure and we observed strong association with this gold
standard, the DPA frailty index should be further validated
within longitudinal settings for predicting adverse health
outcomes among older adults. Nevertheless, our proposed
technique eliminates the bias pertaining to self-reported
measures, does not require the subject to commute to the
clinic, and provides a continuous in-home assessment.
Healthcare research in wearable devices has been con-
stantly growing in various areas like remote patient
monitoring and healthcare [68-72], wearable sensor-
based systems for health monitoring [73-76], and
ambient-assisted living tools for older adults [77]. For
the older adults requiring continuous health monitoring,
sensor-based wearables and remote monitoring will help
eliminate the hassle of periodic commute to diagnostic
centers, reduce the amount of recurring admissions to
the hospital, and facilitate more efficient clinical visits
with objective results [78].
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for predictions using gait performance models (gait performance
parameters, age, and BMI).
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