Study population
The CLHLS study is utilized to investigate health conditions through face-to-face interviews in the Chinese communities. The CLHLS study was established in 1998 and is conducted every 3 years in seven waves. It includes many cities in 23 out of 31 provinces and covers more than 85% of China’s population. For the present research, we have used the data obtained from the seventh wave of the CLHLS conducted in 2014. This survey included 7192 old adults; 2546 of them had blood samples collected for laboratory studies. In our study, the exclusion criteria were (1) Age < 60 years (n = 28); (2) Missing frailty index data (n = 973), laboratory measurement data (n = 93), anthropometric measurements (n = 174), and demographic data (n = 62). Finally, we retained 1216 participants who were aged ≥60 years and for whom complete data were available (Fig. 1).
Data collection
We collected the demographic characteristics of the participants, such as age, sex, educational qualifications, history of smoking or alcohol consumption, physical exercise status, and financial status. This was done using a questionnaire.
The age was taken as a continuous variable and sex as a binary variable (male or female). We converted the years of education into a binary variable (< 1 year of schooling or ≥ 1 year of schooling). The smoking status, alcohol drinking status, exercise status, and financial status were binary variables (To be answered yes or no). We collected information by using questions such as “Do you smoke at the present time,” “Do you drink alcohol at the present time,” “Do you do exercises regularly at present,” and “Does all of your financial support sufficiently pay your daily costs”.
Anthropometric assessment
In our survey, we measured the height (in meters) and weight (in kilograms) of the participants; we calculated body mass index (BMI) by dividing the weight (in kgs) by the square of height (m2). The participants were advised to relax their body and a measuring tape was used to measure the CC and waist circumference (WC) of each participant.
Laboratory investigations
Professional nurses collected blood samples from participant who had fasted overnight. Samples underwent routine hematological examination (including white blood cells, lymphocyte, and hemoglobin [Hb]) in the local center for disease control and prevention. Serum samples were analyzed for lipid profile (total cholesterol, high-density lipoprotein cholesterol [HDL-C], and triglycerides [TG]), plasma albumin (Alb), vitamin D3 (Vit D3), vitamin B12 (Vit B12), and high-sensitive C-reactive protein (HS-CRP) at the central clinical laboratory at Capital Medical University in Beijing. The neutrophil-lymphocyte ratio (NLR) was calculated as (white blood cells – lymphocyte)/lymphocyte as given in the literature [13].
Frailty diagnosis criteria
Frailty status was measured by the FI that was similar to previous CLHLS studies [14, 15]. The FI included routine activities of daily living, instrumental activities of daily living, cognitive functions, overall health status, emotion, and the presence of specific diseases. We had 39 items and 40 health deficits (details in Supplementary Table 1). FI was defined as 0 or 1 for terms. We scored a deficit as 2 if the participants had a serious illness or had been bedridden during the past 2 years. We added the observed number of deficits and then divided the sum by the total number of deficits included. We also defined the FI in two groups based on the literature [16] as non-frail (FI < 0.25) and frail (FI ≥ 0.25).
Statistical analyses
The demographic characteristics (age, sex, education, history of smoking and alcohol consumption, exercise status, and financial status), anthropometric assessment (BMI, CC, and WC) and laboratory results (Alb, Hb, Vit D3, Vit B12, cholesterol, HDL-C, TG, NLR, and HS-CRP) were analyzed for two groups (non-frailty and frailty). We used Student’s t test for continuous variables and Wilcoxon Mann–Whitney test for categorical variables. To explore the risk factors for frailty, multiple logistic regression analysis was performed. We adjusted for demographic characteristic variables (model 1), then adjusted for laboratory measurement variables (model 2), and finally the model was further adjusted for all variables (model 3). In order to predict frailty, receiver operating characteristic (ROC) curve was used to find cut-off points of CC. We established a prediction model for frailty by binary logistic regression. We used the SPSS 26.0 (SPSS Inc., Chicago, Illinois, USA) software for statistical analysis. We considered it to be statistically significant if P values were less than 0.05. We provided odds ratio (OR) with 95% confidence interval (CI) as well.